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Atlantic variability is
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Atlantic meridional mode
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Strongest during boreal spring,

when ITCZ is most sensitive to

meridional SST gradient

Coupled wind-evaporation-SST

feedback in western equatorial

region (Chang et al., 2000)-1
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A!ects rainfall in Northeast Brazil,

Sahel; tropical cyclones
(Folland et al., 1986;

Hastenrath and Greischar, 1993;

Kossin and Vimont, 2007)

SST, winds regressed onto rain
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Atlantic Nino

Strongest in boreal summer,

when thermocline is shallowest

                      

Atl-3 index

Weaker and shorter-lived than

Paci!c ENSO, not self-sustained
(Zebiak, 1993; Latif and Grotzner, 2000;

Keenlyside and Latif, 2007)

Weak correlation with Paci!c

ENSO (Chang et al., 2006)
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Atlantic Nino mechanisms

Westerly wind stress

anomalies deepen

thermocline in eastern

basin (Zebiak, 1993;

Carton and Huang, 1994)

Corr. with Atl-3 (1993-2008)
Reynolds SST
NCEP wind stress AVISO sea level

2-month lead

2-month lag



Interaction between the Meridional and Nino modes

Peak of meridional mode preceeds

Atlantic Nino by one season

Corr. with meridional SST index

Corr. with Atl-3 SST index

Reynolds SST, NCEP wind stressDJF MAM JJA

Sutton et al., 2000

Atl. MM

Atl. Nino

1982-2008

First proposed by Servain et al., 1999.



Possible interaction mechanisms

Wind-SST feedback:   wind-evaporation-SST (Xie, 1999; Chang et al., 2000)

      wind-thermocline-SST (Zebiak, 1993)

      wind-Ekman pumping-SST

Equatorial waves (forced, re!ected Kelvin and Rossby)

(Illig et al., 2004; Hormann and Brandt, 2009)

Warm water anomaly

Low sea-level pressure

wind anomaly

wind climatology

Cold water anomaly

High sea-level pressure
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Data

QuikSCAT winds (daily, 0.5o grid)

Satellite sea level (AVISO, daily, 1o grid)

TMI SST (3-day, 1o grid)

Anomalies relative to 2003-08 mean seasonal cycle

Winds, subsurface temperature from PIRATA moorings

4oN, 23oW:  2006-2009

0o, 10oW:  1999-2009

Daily averages



Ekman pumping velocity

− f hve =
τ x

ρ
− rue

f hue =
τ y

ρ
− r ve

we = h · ve

h = 30 r = 2 × 10
− 4

m s-1m

Lagerloef et al., 1999



2009 anomalies
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Evolution of the 2009 event
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Anomalously strong trade winds in January, followed by

cooling in the north and warming along the equator

Monthly anomalies of SST, τ



Wind-SST interaction

Cold SST anoms. drive anomalous

northwesterly winds, enhancing

wind speed and Ekman pumping.
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Measurements at 4oN, 23oW
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Wind-SST interaction (equator)

Anomalous westerly winds

depress thermocline, causing

anomalous warming
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Measurements at 0o, 10oW

Local winds cannot explain

anomalous cooling during

June-August
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Interaction mechanisms

Wind-SST feedback:   wind-evaporation-SST

      wind-thermocline-SST

      wind-Ekman pumping-SST

Equatorial waves?

Ekman pumping

τx
Wind-induced
evaporation



Equatorial waves

Sea level (shaded),         (contours) SST
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Linear wave model

Merid. boundaries at 45oW and 5oE

-  85% re!ection e"ciency

Forced with 6-hr QuikSCAT 

-  2o-lon x 0.1o-lat grid

-  Jan 2000 - Nov 2009

-  10 baroclinic , 15 meridional modes

-  Vertical modes from annual mean

   WOA05 (5oS-5oN)

Damping: A cn
-2 ,    A c1

-2 = (12 months)-1

QuikSCAT τx

τx = 0

τx = 0

τx

Yu and McPhaden, 1999

Continuously strati#ed, longwave
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Wave model validation
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2009 sea level anomalies

Model qualitatively reproduces interannual variability,

though Rossby and Kelvin amplitudes are weaker than observed
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Forced and re�ected waves

Observed SST anom.Modeled sea level anom.

Re�ected Kelvin wave contributes to

anomalous cooling during June-August
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Role of 

Anomalous southward shift of

ITCZ contributes to anomalous

Ekman pumping, upwelling

Rossby wave
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Upwelling
Rossby wave

Downweling
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Enhanced trade winds

Ekman pumping anomaly
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Summary
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Conclusions

Meridional mode interacts with the Nino mode through

coupled wind-ocean dynamics-SST interactions.

Wind-evap-SST interaction appears to be weaker and

limited mainly to the western equatorial warm pool.

Ekman pumping anomaly centered near 4oN and zonal

wind anomaly on equator generate upwelling Rossby

wave, which re!ects into Kelvin wave and cools eastern

equatorial SST with a lag of ~3 months.


